
Network Fundamentals
Benjamin Brewster

Except as noted, all images copyrighted with Creative Commons licenses,
with attributions given whenever available

IPC via Network Communication

Process A Network

• Terminology:
• Client/Server architecture :: a networking arrangement such that one process

(server) is continuously waiting for new connections from other processes
(clients)

• Client :: process that initiates the connection, requesting a service
• Server :: process that is always running, waiting for new connections from client

processes

Process B

Client/Server Example: Web Server

• The web server is always running and looking for new connections
• Potentially unknown number of clients may connect at any time

• Chrome, Edge, Safari, IE, Firefox, Opera, Lynx, etc.

Web Server

Client 1 Client 2 Client 3 Client n

UNIX Daemons - a Type of Server

• In UNIX, a daemon is a process running in the background, ready to
provide a service to the programs that need it

• syslogd (system log daemon) maintains the system log
• lpd (line printer daemon) manages print spooling
• ntpd (network time protocol daemon) manages clock sync on a network
• dhcpd (dynamic host control protocol daemon) assigns TCP/IP configuration

data to network clients that request it

• In UNIX, daemons all have the init process (pid == 1) as their parent
• As of 2016, many Linux distributions have replaced init with systemd

Example Protocol: HTTP

• HTTP - Hyper Text Transfer Protocol
• Relatively simple: primarily used to support one feature, the requesting

of a file to be downloaded
• Standardized protocol defining:

• How client requests are formatted
• How server responses are formatted

• The protocol is text-based, including all requests, responses, and errors
The world’s most widely used web server is Apache.

Don’t confuse this software with the HTTP protocol
that the server primarily deals with!
Apache’s UNIX daemon name is httpd

Example Protocol: HTTP
• Simple request mode

• Client connects to server then sends:
• GET abc.html

• Server receives and parses the GET command, then returns the file requested

• Enhanced request mode
• Client connects to the server then sends:

• GET index.html HTTP/1.1
• Server responds with some header information, such as server type and version,

then a blank line, and then the data file

Text Protocol Debugging Tool
• telnet helps debug text-based protocols, but was originally designed

for interacting with text-based protocol network sessions

• Almost without exception now, servers do not use telnet for shell access,
as all text is passed in plain text - it can be read by every node in
between the client and server

• SSH is the current standard, which encrypts transmitted data

• You can pass telnet a second parameter that specifies the port you want
to connect to

Demo of telnet and HTTP

1. $ telnet eecs.oregonstate.edu 80

2. <web server> GET / HTTP/1.1

3. <web server> Host: eecs.oregonstate.edu

4. <web server> (Enter again)

To connect to a web server,
we typically use port 80

Non-Text-Based Application Protocols

• Not all application protocols are text-based; TCP/IP has no problem
transferring binary data!

• Advantages of text-based protocols
• Easy to debug
• Easy to communicate and understand (and teach!)

• Disadvantages of text-based protocols
• Not very compact or efficient
• Server can spend a lot of time just parsing text

• Very important for text protocols to be simple!

Network Layer Model - Application

• Application: Your software, utilizing the network
• Agnostic to the underlying methods that make the data go from one host to the

other
• Web browsers, games, IM clients, video chat, email, etc.
• Uses send() and recv(), for example

Layer Common Protocols

Application HTTP

Transport TCP and UDP

Network IP

Link Ethernet, 802.11

Physical Twisted pair copper, radio, fiber

Network Layer Model - Transport

• Transport: Protocols that control how data is sent from one host all the
way to the other, irrespective of the number of nodes, hops, or networks
the data passes through

• TCP: Transmission Control Protocol - connection-oriented, guaranteed,
in-order data transport

• UDP: Universal Datagram Protocol - connectionless, not guaranteed

Layer Common Protocols

Application HTTP

Transport TCP and UDP

Network IP

Link Ethernet, 802.11

Physical Twisted pair copper, radio, fiber

Network Layer Model - Network

• Network: Addressing and organization of a particular set of connected
hosts (called a network), defines addressing between networks

• IP: Internet Protocol - naming, addressing and routing from host to host
and across networks

• Still independent of physical connection type

Layer Common Protocols

Application HTTP

Transport TCP and UDP

Network IP

Link Ethernet, 802.11

Physical Twisted pair copper, radio, fiber

192.168.1.1, for example

Network Layer Model - Link

• Link: Concerned with getting data from just one node to the next neighboring node;
does no planning of routes

• Ethernet: The de facto addressing and signaling protocol currently in use in modern
networks; uses Media Access Control addresses to communicate, together with IP

• 802.11: aka Wi-fi, the de facto protocol for wireless communication; controls sharing
of the congested transmission space and connection speeds based on quality

Layer Common Protocols

Application HTTP

Transport TCP and UDP

Network IP

Link Ethernet, 802.11

Physical Twisted pair copper, radio, fiber

Network Layer Model - Physical

• Physical: The actual hardware used to enable two hosts to talk
• Copper: Standard category 5 and 6 network cables (4 pairs of twisted

copper strands) connect most of the world
• Radio: Enables wireless devices to communicate

Layer Common Protocols

Application HTTP

Transport TCP and UDP

Network IP

Link Ethernet, 802.11

Physical Twisted pair copper, radio, fiber

TCP/IP High-Level Functionality

• The combination of TCP and IP provides communication between two
processes, potentially separated by a network

• TCP/IP stands for Transmission Control Protocol / Internet Protocol

• TCP is the protocol that your application interacts with, while IP
provides the addressing system for routing network packets

TCP Details
• TCP is the most commonly used protocol for transferring information

across a network; second-most common Transport protocol is UDP
• Provides a byte stream interface (like stdio)
• Connection oriented - each side of the connection maintains resources to

keep the connection open until it is explicitly closed
• A TCP connection is bi-directional - traffic can be sent across the

connection in either direction
• Provides controls to slow down the sender if the nodes in the path to the

receiver are burdened with traffic or otherwise lossy

Applications On Top of TCP/IP

• TCP/IP only passes bytes between processes - it does not interpret those bytes
• You write an "application protocol" on top of TCP/IP which defines what the

bytes mean: this is what your program does with the bytes it sends & receives
• TCP/IP is like a phone connection

• A phone transfers sound between two people
• A phone does not interpret the meaning of the sound

• The telephone application protocol (Bob calling Alice):
1. Bob calls Alice’s phone
2. Alice answers and says “Hello”
3. Bob says “Hi” back, and then they both exchange information

TCP Handshaking Starts the Connection

From tcpipguide.com, fetched 2/18/2015

TCP Comparison with IP

• TCP sends out network traffic organized into bundles called packets,
using the addresses specified and organized by IP

• Problem: IP does not guarantee
• Data integrity
• Packet order
• Prevention of duplicates
• Packet will actually arrive

• TCP can detect if the integrity of the stream of packets encounters issues
and will take steps such as these to keep things running:

• Re-order packets
• Request packet re-transmission
• Drop duplicate packets

UDP - User Datagram Protocol

• Provides a very different interface:
• Connectionless (no handshaking, etc.)
• Data is broken into packets called datagrams
• Server does not remember clients between datagrams
• Datagrams may be dropped by the network
• Datagrams may arrive out of order

• UDP has much less overhead than TCP, and is much faster to transfer data
• When to use UDP

• Streaming video/audio
• Mass broadcasting
• Asynchronous communication like that used in games

Internet Protocol Details

• IP specifies:
• How we address machines on the network
• If the machine we are addressing is not on the same local network, IP dictates

how the data can be routed to it

• Each network interface (network card) has an IP address, which must be
unique on the network

• IP(v4) address are 32 bit (binary) numbers, but are usually represented
as four one-byte decimal numbers, separated by periods:

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

IP Addressing: Introduction

• Interface: connection between
host/router and physical link

• Routers have multiple interfaces
• A host typically has one or maybe two

interfaces
(e.g., wired Ethernet, wireless 802.11)

• Each interface has its own IP
address; thus devices with more
than one interface control multiple
addresses

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

IP 4 vs. 6

• IP version 4 (IPv4) uses 32-bit addresses, and therefore has 232 =
4,294,967,296 = 4*109 unique addresses

• This is not enough for the world; in my house alone:
• Xbox One, Xbox 360, five computers, 3 cell phones, amplifier, Blu-ray

player, printer
• A lot of this can be handled by routers, which creates your own

private LAN with addresses hidden from the outside networks,
but this only shines light on the problem

• There are no more IPv4 addresses to give out for the Internet!
• Internet of Things (IoT), always-on connections, and inefficient

address allocation all contributed to usage

Who’s Got
Those

Addresses?

Companies/orgs with IPv4 /8 blocks from Internet Assigned Numbers Authority (IANA, a dept. of ICANN)

Owner /8 Blocks ~IP addresses
US Military (Department of Defense etc.) 12 201 million
Level 3 Communications, Inc. 2 33 million
Hewlett-Packard 2 33 million
AT&T Bell Laboratories (Alcatel-Lucent) 1 16 million
AT&T Global Network Services 1 16 million
Bell-Northern Research (Nortel Networks) 1 16 million
Amateur Radio Digital Communications 1 16 million
Apple Computer Inc. 1 16 million
Cap Debis CCS (Mercedes-Benz) 1 16 million
Computer Sciences Corporation 1 16 million
Deparment of Social Security of UK 1 16 million
E.I. duPont de Nemours and Co., Inc. 1 16 million
Eli Lily and Company 1 16 million
Ford Motor Company 1 16 million
General Electric Company 1 16 million
Halliburton Company 1 16 million
IBM 1 16 million
Interop Show Network 1 16 million
Merck and Co., Inc. 1 16 million
MERIT Computer Network 1 16 million
Massachusetts Institute of Technology 1 16 million
Performance Systems International (Cogent) 1 16 million
Prudential Equity Group, LLC 1 16 million
Société Internationale De Telecommunications Aero. 1 16 million
U.S. Postal Service 1 16 million
UK Ministry of Defence 1 16 million
Xerox Corporation 1 16 million

http://royal.pingdom.com/2008/02/13/where-did-all-the-ip-numbers-go-the-us-department-of-defense-has-them/

IP 4 vs. 6
• IPv6 uses 128-bit addresses

• 2128 > 232

• 3.4 * 1038 > 4.2 * 109

• This is 50 octillion addresses for each of 6.5 billion people on earth

50 octillion addys*:
50,000,000,000,000,000,000,000,000,000

*Theoretically: a lot of them are reserved for special purposes, so the number is lower

Back to Just Our Process

• A process can use just one interface to communicate with itself and
other processes on the same machine

• Address network transmissions to your interface’s own IP address, or
the special hostname “localhost”

• Indicate which process you’re talking to by specifying the “port”
(more on this next lecture)

Network Clients
Benjamin Brewster

Except as noted, all images copyrighted with Creative Commons licenses,
with attributions given whenever available

Berkeley Sockets

• Developed in the early 1980s for BSD Unix under a grant from DARPA
• The de facto network communication method across local area

networks (LAN) and the internet.
• Other transmission methods exist, but they require different transport

protocols.
• i.e., you’d have to write your own version of TCP for a different network protocol

• Seriously, don’t do this. Just use sockets
• Decades of research! Thousands of scientists, academics, engineers, and hobbyists!

• Think of the children!

Network Sockets

Network

• Berkeley Socket API
• A "socket" is the endpoint of a communication link between two processes
• The socket API treats network connections like files as much as possible

Process 1

Socket

Process 2

Socket

File Descriptor Table - Sockets Show Up as Files

0:
1:

2:
3:

Internal data structure for file 0 (file stream stdin)
Internal data structure for file 1 (file stream stdout)
Internal data structure for file 2 (file stream stderr)

• The file descriptor number returned by open() is an index into an array of
pointers to internal OS data structures

• Sockets are added to this table of descriptors in the same way

Family: PF_INET
Service: SOCK_STREAM
Local IP: 192.168.1.20
Remote IP: 208.43.54.2
Local Port: 5956
Remote Port: 80

Multiple Process Communication

• Many different processes can be running on one computer
• However, an IP address only identifies the interface on the computer, not

the process
• How do we know which process is communicating at that particular

interface’s IP address?

COMPUTER
IP Address:
10.0.0.2 Pr

oc
es

s 1

Pr
oc

es
s 2

Pr
oc

es
s 3

. . .

Ports

• This house has address 31
Here’s port 9

Here’s port 1

Here’s port 6

Ports

Here’s port 9

Here’s port 1

Here’s port 6

• Ports are used to reach a specific process on a machine

• Each process listens on a unique port - similar to a unique
entrance into a house

• So a complete address that can be used in a socket is an IP
address combined with a port number:

• 43.144.31.223:80

Socket Documentation

• Most socket related man pages are in the "3n" section
• man -s 3n socket
• man –k socket

• All the info you need to use the network library is scattered across
different man pages

• It’s definitely best to work from a known good network program
starting point! Stay tuned!

Creating and Connecting a Socket on the Client

• Process:
1) Create the socket endpoint with socket()

2) Connect the socket to the server with connect()

3) Use read() and write(), or send() and recv(), to transfer data to
and from the socket (which is sent automatically to and from the socket on
the server)

• Sockets act like files, in that you can read() and write() to them
• send() and recv() are specialized, and can take special flags

int socket(int domain, int type, int protocol);

Creating the Socket

For general-purpose sockets that can
connect across a network, use AF_INET
For sockets that are used ONLY for
same-machine IPC, use AF_UNIX

For TCP, use SOCK_STREAM
For UDP, use SOCK_DGRAM

Use 0 for normal behavior

Returns file
descriptor or -1

int socketFD = socket(AF_INET, SOCK_STREAM, 0);
if (socketFD == -1) {

perror("Hull breach: socket()"); exit(1);
}

int connect(int sockfd, struct sockaddr* address, size_t address_size);

Connecting the Socket to an Address

Socket you want to connect

A struct that holds the address of where
you’re connecting, plus other settings;

More on this coming up

The size of the address struct

Returns 0 on success, -1 on failure

if (connect(socketFD, (struct sockaddr*)&serverAddress, sizeof(serverAddress)))
{

perror("Hull breach: connect()"); exit(1);
}

Filling the Address Struct: IP Address

• Getting the actual address into a form connect() can use it is tricky:

struct sockaddr_in serverAddress;

serverAddress.sin_family = AF_INET;
serverAddress.sin_port = htons(7000);
serverAddress.sin_addr.s_addr = inet_addr("192.168.1.1");

inet_addr() converts a standard dotted IP address
string into an integer format that sockaddr_in requires

htons(): host-to-network-short

Converts from host/PC byte order (LSB)
to network byte order (MSB)
PCs store bytes with smallest digit first,
but networks expect largest digit first

Filling the Address Struct: Domain Name

• Client connecting to server:
struct sockaddr_in serverAddress;
struct hostent* serverHostInfo;

serverHostInfo = gethostbyname("www.oregonstate.edu");
if (serverHostInfo == NULL) {

fprintf(stderr, "could not resolve server host name\n");
exit(1);

}

serverAddress.sin_family = AF_INET;
serverAddress.sin_port = htons(80);

memcpy((char*)&serverAddress.sin_addr.s_addr,
(char*)serverHostInfo->h_addr, serverHostInfo->h_length);

Preserve the special arrangement of the bytes in
these variables by copying the bytes in the given
order, regardless of format, structure, or meaning

This will be used to connect to a server on port 80

Do a DNS lookup and return address information

Source, copying from

Destination, copying to

ssize_t send(int sockfd, void *message, size_t message_size, int flags);

Sending Data

Returns number
of bytes sent

char msg[1024];
…
r = send(socketFD, msg, 1024, 0);
if (r < 1024)

{} // handle possible error

Socket file descriptor
Pointer to data that
should be sent

Number of bytes to send, starting
at address in message

Configuration flags

If this happens, you’ll have to
call send() again to send
what didn’t get sent previously

• Send will block until all the data has been sent, the
connection goes away, or a signal handler interrupts the
write() system call

• Remember that internet connections fail all the time
• Client intentionally disconnects (STOP button in a web browser)
• Network failure
• etc.

Sending Data

ssize_t recv(int sockfd, void *buffer, size_t buffer_size, int flags);

Receiving Data

Returns number
of bytes read

char buffer[1024];
memset(buffer, '\0', sizeof(buffer));
r = recv(socketFD, buffer, sizeof(buffer) - 1, 0);
if (r < sizeof(buffer) - 1)

{} // handle possible error

Socket file descriptor

Pointer to where
received data
should be written

Maximum number of bytes to receive Configuration flags

• if r == -1, ERROR
• if 0 < r < sizeof(buffer) - 1, there may be more data
• if r == 0, sender shut down OR sent a 0-length

packet OR 0 bytes were requestedGray is really, really unlikely

Receiving Data

• Data may arrive in odd size bundles!
• recv() or read() will return exactly the amount of data that has

already arrived
• recv() and read() will block if the connection is open but no data

is available
• So be careful to match what you send with what you receive, or use:

fcntl(socketFD, F_SETFL, O_NONBLOCK);

…to set the socket to not block if there’s no data, but that means you’re polling
the socket, waiting for data; select() would be better (see next lecture!)

Receiving Data - Using Control Codes

• Similar to controlling data being sent through pipes, you can watch
for the amount of data coming through recv() if you know how
much there should be, or use codes:

…
char completeMessage[512], readBuffer[10];
memset(completeMessage, '\0', sizeof(completeMessage)); // Clear the buffer

while (strstr(completeMessage, "@@") == NULL) // As long as we haven't found the terminal...
{

memset(readBuffer, '\0', sizeof(readBuffer)); // Clear the buffer
r = recv(socketFD, readBuffer, sizeof(readBuffer) - 1, 0); // Get the next chunk
strcat(completeMessage, readBuffer); // Add that chunk to what we have so far
printf("PARENT: Message received from child: \"%s\", total: \"%s\"\n", readBuffer, completeMessage);
if (r == -1) { printf("r == -1\n"); break; } // Check for errors
if (r == 0) { printf("r == 0\n"); break; }

}

int terminalLocation = strstr(completeMessage, "@@") - completeMessage; // Where is the terminal
completeMessage[terminalLocation] = '\0'; // End the string early to wipe out the terminal
printf("PARENT: Complete string: \"%s\"\n", completeMessage);
…

Debugging the Contents of Buffers

• Often, when writing send and receive functions, you’ll get garbage. Here’s
an easy way to actually check what’s in a buffer:

int x = 0;
printf("CHAR INT\n");
for (x = 0; x < strlen(buffer); x++)

printf(" %c %d\n", buffer[x], buffer[x]);

• Or:

int x = 0;
printf("CHAR INT\n");
for (x = 0; x < sizeof(buffer); x++)

printf(" %c %d\n", buffer[x], buffer[x]);

Show all chars up to
the first newline

Show all chars in the
entire array

Debugging the Contents of Buffers: Results

CHAR INT
o 111
O 79
0 48

32
l 108

10
L 76
1 49

0

• Look up these ints in a good ASCII table, like this one:
http://www.asciitable.com

Space

New line

Null terminator

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

void error(const char *msg) { perror(msg); exit(0); } // Error function used for reporting issues

int main(int argc, char *argv[])
{

int socketFD, portNumber, charsWritten, charsRead;
struct sockaddr_in serverAddress;
struct hostent* serverHostInfo;
char buffer[256];

if (argc < 3) { fprintf(stderr,"USAGE: %s hostname port\n", argv[0]); exit(0); } // Check usage & args

// Set up the server address struct
memset((char*)&serverAddress, '\0', sizeof(serverAddress)); // Clear out the address struct
portNumber = atoi(argv[2]); // Get the port number, convert to an integer from a string
serverAddress.sin_family = AF_INET; // Create a network-capable socket
serverAddress.sin_port = htons(portNumber); // Store the port number
serverHostInfo = gethostbyname(argv[1]); // Convert the machine name into a special form of address
if (serverHostInfo == NULL) { fprintf(stderr, "CLIENT: ERROR, no such host\n"); exit(0); }
memcpy((char*)&serverAddress.sin_addr.s_addr, (char*)serverHostInfo->h_addr, serverHostInfo->h_length);

// Copy in the address

client.c 1 of 2This is a basic client program that
can send and receive.
It is intended to pair with server.c

// Set up the socket
socketFD = socket(AF_INET, SOCK_STREAM, 0); // Create the socket
if (socketFD < 0) error("CLIENT: ERROR opening socket");

// Connect to server
if (connect(socketFD, (struct sockaddr*)&serverAddress, sizeof(serverAddress)) < 0) // Connect socket to addy

error("CLIENT: ERROR connecting");

// Get input message from user
printf("CLIENT: Enter text to send to the server, and then hit enter: ");
memset(buffer, '\0', sizeof(buffer)); // Clear out the buffer array
fgets(buffer, sizeof(buffer) - 1, stdin); // Get input from the user, trunc to buffer - 1 chars, leaving \0
buffer[strcspn(buffer, "\n")] = '\0'; // Remove the trailing \n that fgets adds

// Send message to server
charsWritten = send(socketFD, buffer, strlen(buffer), 0); // Write to the server
if (charsWritten < 0) error("CLIENT: ERROR writing to socket");
if (charsWritten < strlen(buffer)) printf("CLIENT: WARNING: Not all data written to socket!\n");

// Get return message from server
memset(buffer, '\0', sizeof(buffer)); // Clear out the buffer again for reuse
charsRead = recv(socketFD, buffer, sizeof(buffer) - 1, 0); // Read data from the socket, leaving \0 at end
if (charsRead < 0) error("CLIENT: ERROR reading from socket");
printf("CLIENT: I received this from the server: \"%s\"\n", buffer);

close(socketFD); // Close the socket
return 0;

}

client.c 2 of 2

Client/Server Results

$ gcc -o client client.c

$ gcc -o server server.c

$./server 51717 &
[1] 21094

$./client localhost 51717
CLIENT: Enter text to send to the server, and then hit enter: AWESOMESAUCE
SERVER: I received this from the client: "AWESOMESAUCE"
CLIENT: I received this from the server: "I am the server, and I got your message"
[1]+ Done ./server 51717

$

Network Servers
Benjamin Brewster

Except as noted, all images copyrighted with Creative Commons licenses,
with attributions given whenever available

Network Servers

• This lecture covers
• Setting up network sockets and connecting clients to them
• Demo working server code
• Server concurrency methodologies
• Knowing when data is available

SERVER
IP Address: 192.168.1.1

Non-Concurrent Server Connection Overview

• A server socket listens on a specified port
• Many different clients may be connecting to that port
• The server needs to differentiate between and communicate with each

client

192.168.1.2: 3874
Server
Process listenSocketFD

Port 80
192.168.1.2: 58411

192.168.1.3: 3874

SERVER
IP Address: 192.168.1.1

Non-Concurrent Server Connection Overview

• Step 1: The server chooses the next connection to deal with

192.168.1.2: 3874
Server
Process listenSocketFD

Port 80
192.168.1.2: 58411

192.168.1.3: 3874

SERVER
IP Address: 192.168.1.1

Non-Concurrent Server Connection Overview

• Step 2: The server creates a new file descriptor for the chosen
connection to exclusively use

• Note that the port doesn’t change!

192.168.1.2: 3874
Server
Process listenSocketFD

Port 80
establishedConnectionFD

Port 80

192.168.1.2: 58411

192.168.1.3: 3874

SERVER
IP Address: 192.168.1.1

Non-Concurrent Server Connection Overview

• Step 3: The chosen client begins communication with the new file
descriptor created by the server

• New connections can now be handled again by listenSocketFD

Server
Process listenSocketFD

Port 80
establishedConnectionFD

Port 80

192.168.1.2: 3874

192.168.1.2: 58411

192.168.1.3: 3874

SERVER
IP Address: 192.168.1.1

Connection Differentiation

• The OS network layer on the server differentiates each connection by
using four pieces of the addresses, routing the network packets to the
correct socket/FD based on:

• Server IP, Server Port, Client IP, Client Port

Server
Process listenSocketFD

Port 80
establishedConnectionFD

Port 80

192.168.1.2: 3874

192.168.1.2: 58411

192.168.1.3: 3874

Server Sockets API
• Server Procedure:

1. Create a network socket/FD with socket()
2. Bind the socket to a port number with bind()
3. Start listening for connections on that socket/port with listen()
4. Loop and accept connections on that socket/port with accept(),

connecting them to new sockets for each connection’s exclusive
use

5. Read and write data to and from the newly created sockets for
connected and accepted clients using send() & recv() or
read() & write()

int socket(int domain, int type, int protocol);

Creating the Socket - Same Method as Client

For general-purpose sockets that can
connect across a network, use AF_INET
For sockets that are used ONLY for
same-machine IPC, use AF_UNIX

For TCP, use SOCK_STREAM
For UDP, use SOCK_DGRAM

Use 0 for normal behavior

Returns file
descriptor or -1

int socketFD = socket(AF_INET, SOCK_STREAM, 0);
if (socketFD < 0) {

perror("Hull breach: socket()"); exit(1);
}

Filling the Address Struct for the Server

• Set the address struct so that it accepts connections from any IP
address, or just one, and which specific port it will be available on:

struct sockaddr_in serverAddress;

serverAddress.sin_family = AF_INET;
serverAddress.sin_port = htons(80);
serverAddress.sin_addr.s_addr = INADDR_ANY;

Allows connections from any IP address

htons(): host-to-network-short

Converts from host/PC byte order (LSB)
to network byte order (MSB)
PCs store bytes with smallest digit first,
but networks expect largest digit first

Bind the Socket to a Port

• Ports allow multiple processes running on a single machine to
communicate across the network from only a single IP address

• A server process has to choose a port where clients can contact it on
• bind() associates the chosen port with a socket already created

with the socket() command
• Subsequent calls to bind() using an already-bound socket will fail
• Even after the sockets are all closed, the OS does not immediately

release the port; you’ll need to wait many seconds for it to be
available again for reuse

int bind(int sockfd, struct sockaddr *address, size_t add_len);

Binding the Socket

The network address struct,
which identifies which port
this socket will use

The socket we’re
binding to the port

The size of the
address struct

Returns 0 on
success or -1
on error

if (bind(listenSocketFD, (struct sockaddr*)&serverAddress, sizeof(serverAddress)) < 0)
{

perror("Hull breach: bind()"); exit(1);
}

Listening for Connections

• The server will ignore any connection attempts until you tell the
socket to start listening for connections with listen()

• Once this has been done, the socket will begin queuing up connection
requests until it reaches the connection queue limit

int listen(int sockfd, int queue_size);

The socket we’re enabling
for connections

Returns 0 on
success or -1
on error

Maximum number of
connections to queue

if (listen(sockfd, 5) < 0) {
perror("Hull breach: listen()"); exit(1);

}

Loop and Accept

• Servers generally run continually, waiting for clients to contact them

• Thus a server has an "infinite loop" that continually processes
connections from clients

• The accept() function takes the next connection off of the listen
queue for a socket, or blocks the process until a connection request
arrives

int accept(int sockfd, struct sockaddr* address, size_t &add_len);

Accepting Connections

Network address struct, into
which connecting client
information will be written

The socket we’re going to
get a connection from The size of the

address struct

Returns file
descriptor for
new connection
or -1 on error

int establishedConnectionFD = accept(listenSocketFD,
(struct sockaddr*)&clientAddress,
&sizeOfClientInfo);

if (establishedConnectionFD < 0) { perror("Hull breach: accept()"); exit(1); }

server.c 1 of 2
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

void error(const char *msg) { perror(msg); exit(1); } // Error function used for reporting issues

int main(int argc, char *argv[])

{

int listenSocketFD, establishedConnectionFD, portNumber, charsRead;

socklen_t sizeOfClientInfo;

char buffer[256];

struct sockaddr_in serverAddress, clientAddress;

if (argc < 2) { fprintf(stderr,"USAGE: %s port\n", argv[0]); exit(1); } // Check usage & args

// Set up the address struct for this process (the server)

memset((char *)&serverAddress, '\0', sizeof(serverAddress)); // Clear out the address struct

portNumber = atoi(argv[1]); // Get the port number, convert to an integer from a string

serverAddress.sin_family = AF_INET; // Create a network-capable socket

serverAddress.sin_port = htons(portNumber); // Store the port number

serverAddress.sin_addr.s_addr = INADDR_ANY; // Any address is allowed for connection to this process

// Set up the socket

listenSocketFD = socket(AF_INET, SOCK_STREAM, 0); // Create the socket

if (listenSocketFD < 0) error("ERROR opening socket");

This is a basic server program
that can send and receive.
It is intended to pair with client.c

server.c 2 of 2
// Enable the socket to begin listening

if (bind(listenSocketFD, (struct sockaddr *)&serverAddress, sizeof(serverAddress)) < 0) // Connect socket to port

error("ERROR on binding");

listen(listenSocketFD, 5); // Flip the socket on - it can now receive up to 5 connections

// Accept a connection, blocking if one is not available until one connects

sizeOfClientInfo = sizeof(clientAddress); // Get the size of the address for the client that will connect

establishedConnectionFD = accept(listenSocketFD, (struct sockaddr *)&clientAddress, &sizeOfClientInfo); // Accept

if (establishedConnectionFD < 0) error("ERROR on accept");

// Get the message from the client and display it

memset(buffer, '\0', 256);

charsRead = recv(establishedConnectionFD, buffer, 255, 0); // Read the client's message from the socket

if (charsRead < 0) error("ERROR reading from socket");

printf("SERVER: I received this from the client: \"%s\"\n", buffer);

// Send a Success message back to the client

charsRead = send(establishedConnectionFD, "I am the server, and I got your message", 39, 0); // Send success back

if (charsRead < 0) error("ERROR writing to socket");

close(establishedConnectionFD); // Close the existing socket which is connected to the client

close(listenSocketFD); // Close the listening socket

return 0;

}

Client/Server Results

$ gcc -o client client.c

$ gcc -o server server.c

$./server 51717 &
[1] 21094

$./client localhost 51717
CLIENT: Enter text to send to the server, and then hit enter: AWESOMESAUCE
SERVER: I received this from the client: "AWESOMESAUCE"
CLIENT: I received this from the server: "I am the server, and I got your message"
[1]+ Done ./server 51717

$

multiserver.c 1 of 2
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

void error(const char *msg) { perror(msg); exit(1); } // Error function used for reporting issues

int main(int argc, char *argv[])

{

int listenSocketFD, establishedConnectionFD, portNumber, charsRead;

socklen_t sizeOfClientInfo;

char buffer[256];

struct sockaddr_in serverAddress, clientAddress;

if (argc < 2) { fprintf(stderr,"USAGE: %s port\n", argv[0]); exit(1); } // Check usage & args

// Set up the address struct for this process (the server)

memset((char *)&serverAddress, '\0', sizeof(serverAddress)); // Clear out the address struct

portNumber = atoi(argv[1]); // Get the port number, convert to an integer from a string

serverAddress.sin_family = AF_INET; // Create a network-capable socket

serverAddress.sin_port = htons(portNumber); // Store the port number

serverAddress.sin_addr.s_addr = INADDR_ANY; // Any address is allowed for connection to this process

// Set up the socket

listenSocketFD = socket(AF_INET, SOCK_STREAM, 0); // Create the socket

if (listenSocketFD < 0) error("ERROR opening socket");

This server lives forever by wrapping
the accept() section in a while loop

It is also intended to pair with client.c

multiserver.c 2 of 2
// Enable the socket to begin listening

if (bind(listenSocketFD, (struct sockaddr *)&serverAddress, sizeof(serverAddress)) < 0) // Connect socket to port

error("ERROR on binding");

listen(listenSocketFD, 5); // Flip the socket on - it can now receive up to 5 connections

// Accept a connection, blocking if one is not available until one connects

sizeOfClientInfo = sizeof(clientAddress); // Get the size of the address for the client that will connect

establishedConnectionFD = accept(listenSocketFD, (struct sockaddr *)&clientAddress, &sizeOfClientInfo); // Accept

if (establishedConnectionFD < 0) error("ERROR on accept");

// Get the message from the client and display it

memset(buffer, '\0', 256);

charsRead = recv(establishedConnectionFD, buffer, 255, 0); // Read the client's message from the socket

if (charsRead < 0) error("ERROR reading from socket");

printf("SERVER: I received this from the client: \"%s\"\n", buffer);

// Send a Success message back to the client

charsRead = send(establishedConnectionFD, "I am the server, and I got your message", 39, 0); // Send success back

if (charsRead < 0) error("ERROR writing to socket");

close(establishedConnectionFD); // Close the existing socket which is connected to the client

close(listenSocketFD); // Close the listening socket

return 0;

}

while (1) {

}

printf("SERVER: Connected Client at port %d\n", ntohs(clientAddress.sin_port));

Client/Multiserver Results
$ multiserver 55556 &
[1] 26889

$ client localhost 55556
CLIENT: Enter text to send to the server, and then hit enter: SERVER: Connected Client at port 38422
My Test!
SERVER: I received this from the client: "My Test!"
CLIENT: I received this from the server: "I am the server, and I got your message"

$ client localhost 55556
CLIENT: Enter text to send to the server, and then hit enter: SERVER: Connected Client at port 38424
So much text!!
SERVER: I received this from the client: "So much text!!"
CLIENT: I received this from the server: "I am the server, and I got your message"

$ kill -TERM 26889
[1]+ Terminated multiserver 55556

Note that the order of the
client and server sending
text to the terminal is
hard to control!

Doing it All at Once

• Many clients may need to both connect and perform tasks at the same time
• We want to minimize:

• Response time
• Complexity

• Want to maximize:
• Throughput (connections serviced / second)
• Hardware utilization (%CPU usage)

• These are all tradeoffs of each other!
• Let’s look at two methods…

Iterative Servers

• Iterative
• Handles only one client at a time
• Non-preemptive: additional client must wait for all previous requests to

complete

• Easy to design, implement, and maintain
• Best when:

• Request processing time is short
• No I/O is needed by server
• Order matters

Concurrent Servers

• Concurrency can be provided in two ways:
• Apparent concurrency: a single thread of

execution, using the select() command
and non-blocking I/O

• Real concurrency: multiple
threads of execution,
or multiple processes, each
with one thread

More on select later

Th
re

ad

Process

Apparent Concurrency: Details

• Only one thread, no preemption, using non-blocking I/O
• Whenever an I/O request would block, switch to another connection
• Up to a certain number of clients being server:

• Maximizes CPU utilization
• Increases throughput

• Complexity involves tracking connections, choosing the next to run, detecting
blocking calls, etc.

• Works well if requests are short

Real Concurrency: Details

• Preemptive
• Clients can connect anytime to the server, which uses multiple threads or

processes to service connections
• Up to a certain number of connections:

• Maximizes CPU utilization
• Maximizes response time
• Increases throughput

• Harder to design, implement, and maintain:
• After too many concurrent connections:

• Everything gets worse -> server eventually hangs
• Need to put limits on concurrent connections

More Real Concurrency

• Four different methods
• Create one process per client connection
• Create a pool of available processes before clients connect
• Use only one process, but create one thread per client connection
• Use only one process, but create a pool of available threads before clients

connect

Fork Solution #1

• One process per client connection
• Fork a new process to handle every connection
• Advantages:

• Simple: minimal shared state to worry about

• Disadvantages:
• Process creation via fork() is slow
• Context-switching between processes is also slow, but minor compared to
fork()

Fork Solution #2

• Create a pool of available processes for clients to use
• Advantages:

• No longer have to fork
• Have rapid response as long as there is an idle process available
• Can set the pool size, so that you don't overload the hardware

• Disadvantages:
• Still have process context switching
• Managing the pool of processes can be complex

Threads Solutions 1 & 2

• Threads allow multiple concurrent execution contexts within a single process
• Can implement a server as a single process with multiple threads

• Either one thread per connection, or a pool of threads

• Advantages:
• Trades process context switches (slow) for thread switches (fast)
• Shared address space, shared code, shared data, etc.

• Disadvantages:
• Code must be thread-safe
• Must always worry about inadvertent data-sharing

select()

• select() is designed for server-like applications that have many
communication channels open at once (like a pool of threads)

• Data or space may become available at any time on any of the channels
• You want to minimize the delay between when data/space becomes available

and your process takes action

• Overview: you call select() with a list of read and/or write file
descriptors, and it returns when any one of those descriptors
becomes readable or writable

select()
int select(

int nfds, // Highest numbered FD + 1
fd_set* readfds, // Input FDs of interest
fd_set* writefds, // Output FDs of interest
fd_set* errorfds, // FDs where exception has occurred
struct timeval* timeout // when to time out if nothing happens

)

• The three parameters readfds, writefds, and errorfds are bit masks
• Each bit of the number refers to one file descriptor
• Bit 0 is file descriptor 0, bit 1 is file descriptor 1, etc.

• UNIX provides you with macros to manipulate bit masks:
• FD_ZERO() :: Set all bits to 0
• FD_SET() :: Set one specific bit to 1
• FD_ISSET() :: Determine if a specific bit is set to 1
• FD_CLR() :: Set one specific bit to 0

select() Return Values
• -1 if error
• 0 if time out: nothing ready
• Else, the return value is the

number of file descriptors
ready for reading, writing, or
have had errors occur

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

fd_set readFDs;
struct timeval timeToWait;
int retval;

// Watch stdin (FD 0) to see when it has input
FD_ZERO(&readFDs); // Zero out the set of possible read file descriptors
FD_SET(0, &readFDs); // Mark only FD 0 as the one we want to pay attention to

// Wait up to 50 seconds
timeToWait.tv_sec = 50;
timeToWait.tv_usec = 0;

retval = select(1, &readFDs, NULL, NULL, &timeToWait); // Check to see whether any read FDs have data!
// After select returns, timeToWait is undefined

if (retval == -1)
perror("select()");

else if (retval)
printf("Data is available now!\n"); // FD_ISSET(0, &readFDs) will return true

else
printf("No data within 50 seconds\n");

return(0);
}

This example comes from the
select() man page

selectDemo.c

Together with returning an int, select() also overwrites
your bit masks to show you which bits are interesting; you’ll
have to iterate through them to see which ones are set, though

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

fd_set readFDs;
struct timeval timeToWait;
int retval;

// Watch stdin (FD 0) to see when it has input
FD_ZERO(&readFDs); // Zero out the set of possible read file descriptors
FD_SET(0, &readFDs); // Mark only FD 0 as the one we want to pay attention to

// Wait up to 50 seconds
timeToWait.tv_sec = 50;
timeToWait.tv_usec = 0;

retval = select(1, &readFDs, NULL, NULL, &timeToWait); // Check to see whether any read FDs have data!
// After select returns, timeToWait is undefined

if (retval == -1)
perror("select()");

else if (retval)
printf("Data is available now!\n"); // FD_ISSET(0, &readFDs) will return true

else
printf("No data within 50 seconds\n");

return(0);
}

selectDemo.c
In marking up this code and testing it, the double slash comments // were
confusing the copy/paste functions in vim. So, I changed them all to single
slashes, pasted it all into vim, and then entered this command:

:%s/\//\/\//g

… and it worked, first try.

selectDemo.c Results

$ mkfifo myfifo

$ selectDemo < myfifo &
[1] 17013

$ echo "text" > myfifo
Data is available now!
[1]+ Done selectDemo < myfifo

This hooks the output of the
echo command to the input of
the selectDemo program
through a named pipe!

As soon as both ends are
opened, and data is written,
the pipe transfers the data

echo myfifo selectDemo

UNIX & Security
Benjamin Brewster

Except as noted, all images copyrighted with Creative Commons licenses,
with attributions given whenever available

Dual-Mode Operation

• Sharing system resources requires the operating system to ensure
that a program cannot arbitrarily interfere with other programs

• The hardware itself provides support to differentiate between at least
two modes of operations:

• User mode: execution done on behalf of a user
• Monitor mode (also supervisor mode or system mode): execution done on

behalf of the operating system

• Privileged instructions can be issued only in monitor mode

Dual-Mode Operation
• The mode bit is added to computer hardware to indicate the current

mode: monitor (0) or user (1)
• When an interrupt or fault occurs, the hardware switches to monitor

mode by following the address, stored in the interrupt vector, to the
interrupt handler function in the OS; this handler will let the OS decide
what to do next

Interrupt/fault
Sets mode bit to 0

OS Interrupt handler() User Program

Sets mode bit to 1

Interrupt Vector

Return to user program

I/O Protection

• All I/O instructions (read(), write(), send(), recv(),
fgets(), putc(), etc.) are privileged instructions

• Because: the OS must ensure that a user program could never gain
control of the computer in monitor mode by storing a new address in
the interrupt vector

Memory Protection

• Must provide memory protection at least
for the interrupt vector and the interrupt
handler function

• In order to have memory protection, add
two registers that determine the range of
legal addresses a program may access:

• Base register – holds the smallest legal physical
memory address.

• Limit register – contains the size of the range
• Memory outside the defined range is

protected

Memory Protection

• The base and limit registers define a
logical address space, which is virtualized
for the process to start at address 0

• When executing in monitor mode, the
operating system has unrestricted access
to both monitor and user’s memory

• Obviously, the load instructions for the
base and limit registers are privileged
instructions

OS

Process 1

Process 2

Process 3

Process 4

0

512000

712000

998020

1010288

1020288

512000

200000

Base Register

Limit Register

CPU Protection

• If the CPU is executing program instructions one after the next, how
does the OS retain control?

• A timer interrupts the control flow after a specified period to ensure
that the operating system has a chance to determine what to do

• Timer is decremented every clock tick
• When timer reaches the value 0, the interrupt vector is followed to the

interrupt handler

• Timer commonly used to implement time sharing
• Also used to compute the current time
• “Load-timer” is a privileged instruction

General-System Architecture
• Given the I/O instructions are privileged, how does the user program

perform I/O?

• With a system call: the method used by a process to request action by
the operating system

• Control passes through the interrupt vector to a service routine in the OS, and
the mode bit is set to monitor mode

• The monitor verifies that the parameters are correct and legal, executes the
request, and returns control to the program instruction immediately following
the system call

User Account Rights Protect Files

• User files are protected from other users by defining access based on
user accounts

• If you are logged in as an account with access (e.g., you're the owner,
or a group owner), you can manipulate the file:

• chmod
• vim
• touch
• rm
• etc.

Acting as a Different User - Pretexting

• If you want to temporarily act as a different user (but stay logged on
as yourself), you can use the su command:

• su yoog

• You can also execute just one action with the sudo command:
• sudo -u yoog rm -rf ~/yoogFiles/*

• These commands change your effective user and/or group IDs, all of
which can be displayed with the id command

Obviously, you'll need to know
yoog's login credentials

The root User Account

• Most UNIX systems have a super-user account, typically called root,
which has permissions to do anything

• su root
• sudo -u root pkill -u brewsteb

• As root, you can change file ownership, change limits on how many
processes users can run at once, add and delete user accounts, and
many other things

• It is generally considered bad form to stay logged-in to root itself - it’s
preferred that you make use of sudo to make changes

SUID, SGID

• Each executable has two security bits associated with it: SUID, and SGID
• If SUID is set, the executable runs with effective user ID of the owner of the file
• If SGID is set, the executable runs with effective user ID of the group owner of

the file

• This is different from before – we're now talking about specific
executibles that have bits that enable them to run as different users

• As opposed to being a different user, and then running programs, as su and
sudo allow

Changing SUID Example

$ which ping
/bin/ping

$ ls -pla /bin/ping
-rwsr-xr-x. 1 root root 38264 May 10 2016 /bin/ping

$ chmod u-s /bin/ping
chmod: changing permissions of `/bin/ping': Operation not permitted

$ ls -pla junk.test
-rw-rw----. 1 brewsteb upg57541 332 Nov 17 09:47 junk.test

$ chmod u+s junk.test

$ ls -pla junk.test
-rwSrw----. 1 brewsteb upg57541 332 Nov 17 09:47 junk.test

$ chmod u+x junk.test

$ ls -pla junk.test
-rwsrw----. 1 brewsteb upg57541 332 Nov 17 09:47 junk.test

Can’t change the permissions
of a file I don’t own

Capital ‘S’ means that the SUID
bit is set, but user execute is not

Changes to lower case ‘s’ now
that SUID is set

chmod Revisited
• It turns out that there are twelve mode bits:

• 4000 - Setuid on execution
• 2000 - setgid on execution
• 1000 - set sticky bit
• 0400 - read by owner
• 0200 - write by owner
• 0100 - execute by owner
• 0040 - read by group
• 0020 - wr
• 0010 - execute by group
• 0004 - read by others
• 0002 - write by others
• 0001 - execute by others

Why SUID Matters

• What if you replace the contents of the real ping, which has SUID
set and is owned by root, with your own code?

• It would have the same permissions (owned by root), but could do
anything you want to the system

Why SUID Matters

• What happens when you set the SUID bit on your own executables?
• They would still be owned by you, and thus would run as you

• Since you’re not root this isn’t very interesting

• Can you give your custom executable to root?
• No – this is specifically why you have to be logged in as root to change

file ownership!
• chown doesn’t work unless you’re root
• chgrp don’t work unless you are a member of that group

Strongest Forms of Security

• The strongest forms of security involve
network and physical isolation, but
these seriously limit utility

• If you do grant physical access to your
computer - even disabling local login
access - you still have to worry about:

• Bootable devices (live CDs, flash drives, etc.) can
boot a different OS that can access the hard drive
of your computer

• Hard drive could be stolen and read
• Reading link-level NIC lights, keyboard EM

• With local logins, passwords = pain

Actual Password Security… is a Pain in the Neck
• Don't let users write them down
• Age the passwords
• Enforce stronger (but more annoying)

passwords
• 1337: @nt3@t3|2
• random: Z1#3s8u*h
• long: Ho\/\/doYouTypeMeF@st

• Restrict use of previous passwords
• Password dictionary check

mypassword

Password Security

• Longer is better than more complicated
• Lower case letters = 26 possibilities per character
• Upper case letters = 26 possibilities per character
• Numbers = 10 possibilities per character
• Special Characters = 30 possibilities per character
• Any given character could be 1 of 92 choices
• There are then 928 8-character passwords:

• 92 x 92 x 92 x 92 x 92 x 92 x 92 x 92 = 928

• 928 = 5.1x1015 = 5,132,188,731,375,616

Password Security

• Longer is better than more complicated
• 928 = 5.1 x 1015 = 5,132,188,731,375,616

• Using just lower case letters:
• 268 = 2.0 x 1011 = 208,827,064,576

• A 12 character, lower-case password:
• 2612 = 9.5 x 1016 = 95,428,956,661,682,176

Password Security

• Which is easier to remember:
• TR0m&on3
• ihavetwoarms

• Which are you more likely to write down?

• FYI, 4 common words are important in the example above
• See xkcd’s excellent correct horse battery staple comic:

https://xkcd.com/936/

Most common
passwords
recovered from
hacked data
dumps

Login Failures

• What happens if you don't lock a user account if too
many failures happen?

• A account can be brute forced by guessing possibilities

• Passwords are generated with the sausage model
(one-way):

• username: UserBob
• password: 123456 -> hashes to -> a3R7nito5fo%r

• Store the pair UserBob / a3R7nito5fo%r
• This encrypted pair is public knowledge, but the

encryption method is one-way

Password Encryption

• If anyone knew how to reverse the password method, then:
• a3R7nito5fo%r -> comes from -> 123456

• Fortunately it is very hard to crack the one-way encryption
• Problem: why is storing the password file publicly dangerous, and

why is having a large encrypted password file stolen a problem?
• A dictionary can be built of encryptions by turning the crank sequentially:

• 123454 = JoF9#$94(4k9!
• 123455 = fj49#mc903#0Q
• 123456 = a3R7nito5fo%r
• 123457 = h9^wehf9*3xd9

Monitoring and Logs
• With all of the insecure

protocols still in use
(telnet, FTP), keep a tight
eye on everything with
log files:

• Network
• Account login/logout
• Program usage
• File access
• Security checks
• etc.

Getting Root Access when you're not supposed to have it…

• Try the front door first:

ACCOUNT: PASSWORD
• root: root
• sys: sys / system / bin
• bin: sys / bin
• mountfsys: mountfsys
• adm: adm
• uucp: uucp
• nuucp: anon

• anon: anon
• user: user
• games: games
• install: install
• demo: demo
• umountfsys: umountfsys
• sync: sync
• admin: admin
• guest: guest
• daemon: daemon

• Assuming social engineering didn't work, you'll have to use fancy stuff:
• Port scans + port/program insecurities
• Buffer overflows (with system access)
• Boot hacking (with physical access)

• Why are we talking about this stuff?
• So you can protect yourself against it

Getting Root Access when you're not supposed to have it…

Breaking Into Windows

• Boot off of the installation media (Windows Server 2008 DVD, here)

http://www.howtogeek.com/106333/how-to-reset-your-forgotten-domain-admin-password-on-server-2008-r2/

Breaking Into Windows

• Click here…

Breaking Into Windows

• Enter these two commands…

• Reboot without CD, booting normally into Windows on the hard drive,
then click here:

• Instead of accessibility, you get a privileged prompt! Change the
password like this…

Breaking Into Windows

• Log in using the new password!
• Remember to put the files back

where you got them from
• Works in Windows 7, 8, 8.1, 10,

and Server 2012, too!
• Why not create a few new local

user accounts of your own,
while you’re in there?

• Q: Why can’t we create domain
accounts?

Breaking Into Windows

Password Annihilator - with Physical Access

• Reset, change, or blank out any Windows password by booting from a
flash drive or CD:

• http://pogostick.net/~pnh/ntpasswd/

http://www.techrepublic.com/blog/windows-and-office/reset-lost-windows-passwords-with-offline-registry-editor/

Apple and You?

• In August of 2012, Wired Magazine editor Mat Honan had his Apple
account penetrated

• The perpetrators used Mat’s Apple account to remotely erase all data
on his iPhone, iPad, and MacBook

• This was accomplished by using what multiple companies knew about
Mat to put together a complete profile

-Ariel Zambelich, Wired

Who ARE you?

• The perps proved they were Mat, which let them reset Mat’s Apple
password, and then reset his equipment

• How can you prove you’re Mat?
• Apple says that Mat is the last four digits of his credit card

• How do we get these last four digits?

1. Call Amazon, tell them you are the Account Holder
• You’ll need Name, Email address, Billing address

2. Add a credit card over the phone
3. Hang Up
4. Call Back, tell them you’ve lost access to your account

• You’ll need Name, Email address, Billing address, and a credit card number
• They let you add a new email address: use yours

5. From the web, reset the password, using your new email
6. View the last four digits of the credit cards in the account

How to become Mat

Security Isn’t Easy

• That’s literally all this slide says

OS Comparisons & Beyond
Benjamin Brewster

Except as noted, all images copyrighted with Creative Commons licenses,
with attributions given whenever available

What We’ll Cover

• A brief history of some of the major Operating Systems that make up
our current landscape

• Compare and contrast a few Operating Systems

• Even wax a bit philosophical about the past and future

Short History of DOS - Business-Driven

• The setup: Bill Gates and Paul Allen were writing and selling Microsoft
BASIC, a language for development, to early computer hobbyists

• IBM was just finishing up prototypes for their new PC and approached
Microsoft to see if they had an OS suitable for the hardware in ~12/80

• Microsoft didn’t have an OS, so they quickly licensed 86-DOS from
Seattle Computer Products (written by 24-year old Tim Paterson)

• Microsoft presented 86-DOS as “Microsoft DOS” to IBM, who
accepted it; after a re-write, IBM and MS jointly retained copyright

• Microsoft purchases the rights to 86-DOS in 7/81 from SCP; SCP later
sues, claiming Microsoft hid their deal with IBM to get it cheap

Short History of DOS - Business Driven

• IBM begins sales of its PCs with PC-DOS in 8/81
• Microsoft, however, begins sales of MS-DOS (the same thing as PC-

DOS without IBM’s specific drivers for its own PC) to other OEMs
• Eventually, Microsoft gains exclusive rights to DOS, and sells to all

OEMS, securing their place in the market
• The last version of MS-DOS was 6.0, released 3/93 to huge sales and

success

Short History of Windows - To The Future

• Windows 1.0 was released November 20, 1985, and was not well
received - it was mainly an overlay over DOS

• Licensing requirements for Microsoft, which had created applications for
Apple, enforced limits: windows could not overlap on screen!

• Included Paint, Write, a terminal, MS-DOS, and Reversi, among others

• Apple and Microsoft began legal battles with Windows 2.03 and 3.0;
the judge dropped all but 10 of Apple’s 189 claims of infringement,
and most of the 10 left were over uncopyrightable ideas

Short History of Windows - To The Future

• Windows 3 (released May 1990) was wildly successful, selling around
10 million copies even before 3.1 came out; support ended in 2001

• Support for 32-bit software began with Windows 95, released 8/24/95

• Followed by: OS/2, NT, 98, 2000, ME, XP, Server 2003, XP 64, Home
Server, Vista, Server 2008, 7, Server 2008 R2, Home Server 2011, Thin
PC, 8, Server 2012, 10, Server 2016

Short History of Windows - The Wealthiest

• Forbes list of billionaires
in 2016:

1. Bill Gates, 75 B
2. Amancio Ortega, 67 B
3. Warren Buffett, 60 B
4. Carlos Slim, 50 B
5. Jeff Bezos, 45 B
6. Mark Zuckerberg, 44 B
7. Larry Ellison, 43 B
8. Michael Bloomberg, 40 B
9. Charles Koch, 39 B
10. David Koch, 39 B

Given away more than 33 Billion
today, more than anyone in history

Short History of macOS - Inspired

• Steve’s Wozniak and Jobs found Apply Computer Inc. on 1/3/77,
immediately beginning to make computers of Wozniak’s design

• Apple I sells 200 units, before Apple is founded, but the Apple II,
launched in April 1977 goes on to sell millions well into the 1980s

• Apple IPO on 12/12/80 generates more capital than any IPO since
Ford in 1956, instantly creates more millionaires than any company in
history

• Apple visits Xerox PARC, comes back with ideas for Apple’s first GUI-
based computer, the Lisa, which introduces the words mouse,
desktop, and icon; Lisa costs $10K in 1983 ($23.8K in 2016) and fails

Short History of macOS - Inspired

• Subsequent computers are successful running early versions of the Mac OS,
though Jobs and Wozniak both leave in 1985

• Jobs founds NeXT, which produces the UNIX-based NeXTstep OS on the
computers it sells; this OS uses the Mach 2.5 kernel and subsystems from
BSD 4.3

• In 1996, Apple buys NeXT, as a result of Jobs influence, beating out rival
BeOS, which sees Jobs return as CEO to Apple!

• Microsoft donates $150 million to Apple to call an end to the decades-long
legal war between the companies

• NeXTstep becomes the foundation of OSX, which launches in 2001 as
version 10.0 “Cheetah”

• OSX morphs into macOS version 10.12 “Sierra” in 2016

Short History of iOS - Revolutionary

• When Jobs returns to Apple, he brings with him the WebObjects Application
server from NeXT, which turns into the Apple Store

• Internally at Apple, OS X is forked into iOS: it’s still Mach and BSD
underneath it all

• Capacitive sensors are added to the screen, and an entirely new user
paradigm is created: touch, hiding the file system, and a simple web browser

• iOS version 1 (initially called “iPhone OS”) launches with the iPhone in
January 2007; App Store doesn’t launch until July 2008

• Apple unit sales in 2016 across their three major divisions:
• iPhone: 211.88 million
• iPad: 45.59 million
• Mac: 18.48 million Mobile devices (iPhone, iPad) make

up 93% of Apple’s unit sales in 2016

Sales figures: https://www.statista.com/statistics/382302/unit-sales-of-apple-by-product-category

Short History of Android - Playing Catch-Up

• Android, Inc. was founded in Palo Alto in October 2003
• Initial smartphone plans were to compete with Symbian and

Windows Mobile using a custom fork of Linux
• In June 2005, Google purchased Android, Inc. for at least $50 million
• The earliest prototypes of Android resembled BlackBerry’s OS with a

full QWERTY keyboard layout; after Apple’s announcement and
rollout of the iPhone in 2007, those visual layouts and keyboard plans
were scrapped

• The first phone with Android was the HTC Dream, released on
10/22/2008

Short History of Android - Victory

• Fast forward to today, Android is not just the dominant mobile OS, it’s
the dominant OS in all sales of devices worldwide

• In 2015 sales, according to Gartner Research, Android’s market share
is unrivaled:

• Android: 1.3 billion devices (54%)
• iOS/OS X combined: 297 million devices (12.3%)
• Windows: 283 million (11.7%)
• All others: ~520 million (21.6%)

OS Internal Architecture - Booting with BIOS

• Before we can talk about the procedures being followed in the kernel,
we need to understand the first stages of how modern OSs boot

• In ye olden days (pre-2014) a switched-on computer would first load
the BIOS (Basic Input and Output System), which:

• Performed hardware initialization, including testing
• Loaded a full-featured boot loader, which may simply load an OS itself from

mass memory device, or provide the user a selection of OSs to boot from
• Provided an abstracted, consistent method of getting data to and from input

and output devices

OS Internal Architecture - Booting with UEFI

• Modern PCs, when switched on, now first load the UEFI (Unified
Extensible Firmware Interface) firmware

• The UEFI is a mini-OS that provides many more features:
• Boot from large disks (up to 8 ZiB) with a modern GUID Partition Table (GPT)
• Full-featured pre-boot environment, including a mouse and keyboard-driven

GUI, audio, network access, hardware testing, and IT management
• Booting the OS of your choice from all registered systems
• Optionally, preventing unsigned drivers from being used in the booting of an

OS, which prevents firmware-level rootkits (and possibly locking hardware to
a specific OS)

OS Internal Architecture - Booting with UEFI

• Modern PCs, when switched on, now first load the UEFI (Unified
Extensible Firmware Interface) firmware

• The UEFI is a mini-OS that provides many more features:
• Boot from large disks (up to 8 ZiB) with a modern GUID Partition Table (GPT)
• Full-featured pre-boot environment, including a mouse and keyboard-driven

GUI, audio, network access, hardware testing, and IT management
• Booting the OS of your choice from all registered systems
• Optionally, preventing unsigned drivers from being used in the booting of an

OS, which prevents firmware-level rootkits (and possibly locking hardware to
a specific OS)

One megabyte = 1,000,000 bytes = 10002 bytes
One gigabyte = 1,000,000,000 bytes = 10003 bytes
One terabyte = 1,000,000,000,000 bytes = 10004 bytes
One petabyte = 1,000,000,000,000,000 bytes = 10005 bytes
One exabyte = 1,000,000,000,000,000,000 bytes = 10006 bytes
One zettabyte = 1,000,000,000,000,000,000,000 bytes = 10007 bytes

= 1,000,000,000,000 gigabytes

One zebibyte = 1,180,591,620,717,411,303,424 bytes = 10247 bytes

Windows Internal Architecture

• User programs can access the OS by using the Windows API, of which
there are many versions: Win32, Win64, etc.; backwards compatibility
is a major focus, allowing many of these APIs to be accessible at the
same time

• The user has deep access to low-level aspects of the GUI, which can
cause simple programs to be large if API libraries such as .NET or
DirectX are not used

• A large set of services run on top of the kernel providing access to
various features of Windows to user programs

Windows Internal Architecture

• The Registry: a hierarchical database of configuration settings for
Windows and Applications

• Used by the OS itself (kernel), drivers, services (what Windows calls daemons),
the security system (SAM), and UI

• Applications can use the registry if they wish, but could also use standard
configuration files in the file system

• Security Account Manager
• An encrypted database file that stores the hashed passwords and local accounts
• Cannot be messed with while Windows is running (though in-memory

passwords can be dumped); can be edited when Windows is not running
(during a Linux boot off a live CD, for example);

Windows
Internal
Architecture

Windows Boot Procedure

• Power On
• UEFI program executed
• The Windows bootloader Winload.exe loads basic drivers required to

read data from disk
• Kernel is initialized
• Registry and non-boot drivers are loaded and started
• Winlogon.exe starts, requiring the user to login
• Upon successful login, explorer.exe is started
• Desktop window manager (DWM) is started

• The UNIX concept and implementation of pipes, which allows data to
be moved between many small interacting programs, also
causes/implements blocking system calls, which causes data to be
moved in staggered pieces around the system

• Thus, the implementation of pipes as memory buffers, which copy so
much data around, does not scale well when fast speeds and low
latency are desired

• So the natural response in the 1980s was to write the kernel and core
functionality as a single large, unwieldly program to prevent copying

• These large kernels are bug-prone; small interacting pieces are much
easier to test and verify independently!

macOS Internal Architecture - Kernel Dev Origins

macOS Internal Architecture - Kernel Dev Outcome

• New theories of kernel design were tested out in the Aleph kernel
developed at University of Rochester in 1975, where the kernel was shrunk
to handle only access to hardware, including memory: thus, it uses a form
of shared memory to copy information around between easily tested
subsystem programs

• New CPUs developed in the early 80s offer support for a Memory
Management Unit (MMU), which allows for virtual memory to be
implemented, tracking the pages of memory in use by processes

• This allows memory that is told to be “copied” to instead be transparently
referenced virtually, dramatically reducing the amount of data being copied
by the kernel; this is called copy-on-write (i.e., copy only if you’re going to
make a modification)

• These new, smaller kernels are called microkernels

macOS Internal Architecture

• macOS uses the Mach microkernel paired with BSD programs to
provide system call access

• User programs can access macOS by using the standard, tried-and-
true UNIX API system calls we’ve been studying, in addition to other
API libraries that access additional functionality of the OS

• Drivers are abstracted as one form of “kernel extensions”, which are
all loaded when the OS boots - thus trusted, low-level code can be
added to the kernel by third-parties

macOS Internal Architecture

CC BY-SA 3.0
https://upload.wikimedia.org/wikipedia/commons/
f/f2/Diagram_of_Mac_OS_X_architecture.svg

macOS Boot Process

• Power On
• UEFI program executed
• Control passed to the BootX bootloader
• BootX loads previously cached list of kernel extensions, including drivers
• init process in Mach microkernel is started; control has left the firmware
• Mach and BSD data structures are initialized
• I/O starts up
• Kernel starts virtual memory management tracking routines
• Kernel starts GUI and other daemons/services

The Importance Of UNIX

• UNIX is run on a vast majority of devices around the world
• It has generated fortunes, saved lives, and been an agent for positive

change for millions and millions of people
• Today, you can even run a bash shell in Windows 10

• Let’s take a look back at the historical connections between UNIX,
Linux, and all the variants

UNIX Connections

CC BY-SA 3.0 -https://en.w
ikipedia.org/w

iki/List_of_U
nix_system

s#/m
edia/File:U

nix_history-sim
ple.svg

Linux Connections - Go Check This Out

CC BY-SA 3.0 - https://en.wikipedia.org/wiki/List_of_Linux_distributions#/media/File:Linux_Distribution_Timeline.svg

Slackware DebianRed HatGentooArchetc.etc.Android

A Few Early Pioneers

• Tommy Flowers designed Colossus (1944), the world’s first
programmable electronic computer to help decrypt German wartime
messages

• J. Presper Eckert & John Mauchly designed and built the ENIAC
(1946), the first all electronic, Turing-complete computer, and the
UNIVAC I (1951), the first commercially available computer

• Margaret Hamilton coined the phrase “software engineering”,
instrumental in testing and timing-critical human interaction with
computers; led dev of on-board software used in Apollo missions

• One of the first OSs with a software-based paged virtual memory was
THE, designed by a team led by Edsger Dijkstra way back in 1962

Edsger Dijkstra (1930 – 2002)
Contributions

• “Dijkstra’s Algorithm”

• Semaphores, including the Dining Philosopher
Problem, deadlock, and other synchronization issues

• Operating system design, including abstraction layers

• Compiler design (he wouldn’t shave his beard until he
had created the first ALGOL 60 compiler, then decided
to keep it)

• Software engineering, including the paper, “A Case
against the GO TO Statement”, helping shape
programming as a discipline, not an ad hoc craft

• Distributed computing

• Formal specs and verification, and how to simplify
them; CS cast as math

Picture by Hamilton Richards - manuscripts of Edsger W. Dijkstra, University Texas at Austin.
(Mirrored), CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=46866934

THE’s layers

• Dijkstra’s THE system had these layers all the way back in 1968:
• Layer 0: Scheduler
• Layer 1: Memory pager
• Layer 2: Communication between OS and terminal
• Layer 3: Managed IO between attached devices
• Layer 4: User Programs
• Layer 5: The User (Dijkstra says, “not implemented by us”)

• What will you, dear student, do with the implementation of yourself?

Edsger Dijkstra Quotes

• "Brainpower is by far our scarcest resource.“
• "The competent programmer is fully aware of the strictly limited size

of his own skull; therefore he approaches the programming task in full
humility, and among other things he avoids clever tricks like the
plague.“

• "Simplicity is prerequisite for reliability.“
• "Programming is one of the most difficult branches of applied

mathematics; the poorer mathematicians had better remain pure
mathematicians."

Edsger Dijkstra Quotes

There may also be political impediments [to becoming an exceptional programmer]. Even if
we know how to educate tomorrow’s professional programmer, it is not certain that the
society we are living in will allow us to do so. The first effect of teaching a methodology —
rather than disseminating knowledge — is that of enhancing the capacities of the already
capable, thus magnifying the difference in intelligence. In a society in which the
educational system is used as an instrument for the establishment of a homogenized
culture, in which the cream is prevented from rising to the top, the education of
competent programmers could be politically impalatable.
Let me conclude. Automatic computers have now been with us for a quarter of a century.
They have had a great impact on our society in their capacity of tools, but in that capacity
their influence will be but a ripple on the surface of our culture, compared with the much
more profound influence they will have in their capacity of intellectual challenge without
precedent in the cultural history of mankind.

ACM Turing Lecture 1972

Edsger Dijkstra Quotes

There may also be political impediments [to becoming an exceptional programmer]. Even if
we know how to educate tomorrow’s professional programmer, it is not certain that the
society we are living in will allow us to do so. The first effect of teaching a methodology —
rather than disseminating knowledge — is that of enhancing the capacities of the already
capable, thus magnifying the difference in intelligence. In a society in which the
educational system is used as an instrument for the establishment of a homogenized
culture, in which the cream is prevented from rising to the top, the education of
competent programmers could be politically impalatable.
Let me conclude. Automatic computers have now been with us for a quarter of a century.
They have had a great impact on our society in their capacity of tools, but in that capacity
their influence will be but a ripple on the surface of our culture, compared with the much
more profound influence they will have in their capacity of intellectual challenge without
precedent in the cultural history of mankind.

ACM Turing Lecture 1972
We are teaching you the
theories so that you can
acquire any skill

Edsger Dijkstra Quotes

There may also be political impediments [to becoming an exceptional programmer]. Even if
we know how to educate tomorrow’s professional programmer, it is not certain that the
society we are living in will allow us to do so. The first effect of teaching a methodology —
rather than disseminating knowledge — is that of enhancing the capacities of the already
capable, thus magnifying the difference in intelligence. In a society in which the
educational system is used as an instrument for the establishment of a homogenized
culture, in which the cream is prevented from rising to the top, the education of
competent programmers could be politically impalatable.
Let me conclude. Automatic computers have now been with us for a quarter of a century.
They have had a great impact on our society in their capacity of tools, but in that capacity
their influence will be but a ripple on the surface of our culture, compared with the much
more profound influence they will have in their capacity of intellectual challenge without
precedent in the cultural history of mankind.

ACM Turing Lecture 1972
We will reward winners and
victors; life doesn’t hand out
participation trophies

Edsger Dijkstra Quotes

There may also be political impediments [to becoming an exceptional programmer]. Even if
we know how to educate tomorrow’s professional programmer, it is not certain that the
society we are living in will allow us to do so. The first effect of teaching a methodology —
rather than disseminating knowledge — is that of enhancing the capacities of the already
capable, thus magnifying the difference in intelligence. In a society in which the
educational system is used as an instrument for the establishment of a homogenized
culture, in which the cream is prevented from rising to the top, the education of
competent programmers could be politically impalatable.
Let me conclude. Automatic computers have now been with us for a quarter of a century.
They have had a great impact on our society in their capacity of tools, but in that capacity
their influence will be but a ripple on the surface of our culture, compared with the much
more profound influence they will have in their capacity of intellectual challenge without
precedent in the cultural history of mankind.

ACM Turing Lecture 1972
Go do something useful!

Improve life, don’t just live it!

